Supervised Readings I

Linear Representations of Finite Groups

Artin's Theorem

Date: 12/14/2023

Chang-Yoon Seuk

with Prof. Amadou Bah

Preliminary

Prior to stating Artin's theorem, we shall define the notion on characters' and 'rings' Definition 1 : character

From $P: G \longrightarrow GL(V)$ be a linear representation of finite groups to the vector space V, we take $\chi_{P}(s) = Tr(Ps)$ as the character of P, $\forall s \in G$. Proposition 1.1: if P has degree $n \Longrightarrow (i) \chi(1) = n$ since we have $\dim(V) = n$, P(1) = 1 and Tr(1) = n (ii) $\chi(S^{-1}) = \chi(\overline{S})$, $\forall s \in G$. We set λ_{i} be the eigenvalue, then $\chi(\overline{S}) = Tr(\overline{Ps}) = \sum \overline{\lambda_{i}} = \sum \chi_{i}^{-1} = Tr(P_{s}^{-1}) = Tr(P_{s}^{-1}) = \chi(S^{-1})$ (iii) $\chi(\overline{tst}) = \chi(s)$, $\forall t, s \in G$. Set u = ts, $v = t^{-1} = Tr(vu)$ By (iii), let us recall class functions: a function f on G is called a class function' $if f(t^{-1}st) = f(s) = f(s) = f(s)$.

Definition 2: Induced representation and characters

Let $H \leq G$ be a subgroup; R be a system of left cosets for H; $V = \mathbb{C}[G] - module$; $W = sub - \mathbb{C}[G] - module of V$, then V is induced by Wif $V = \bigoplus_{s \in R} sW$. Here, we may reform $W' = \mathbb{C}[G] \bigotimes_{c \in HJ} W$. ; e. the induced representation $V = \operatorname{Ind}_{H}^{G} W$ in which can be gotten from W by Scalar extension from $\mathbb{C}[H]$ -module to $\mathbb{C}[G]$ Remark: Every representation of G defines a unique left $\mathbb{C}[G] - \operatorname{module}$ where $\mathbb{C}[G]$

is a group ring of formal sums of elements of G with complex coefficients.
i.e. C[G] is the algebra G over C, for each
$$f \in C[G]$$
 can be uniquely written as $f = \sum_{s \in G} a_s S + a_s \in C$.

Further on class function: let
$$f$$
 be a class function on H , if we have
 $f' = \frac{1}{|H|} \sum_{\substack{t \in G \\ t' \ s \ t \in H}} f(t'st)$, then $f' = \operatorname{Ind}_{H}^{G}(f)$; e. f' is induced by f .

Proposition 2.1: (i) f' is a class function on G , (ii) If f is a character of W of $H \leq G$, $\operatorname{Ind}_{H}^{G}(f)$ is also a character of $\operatorname{Ind}_{H}^{G}(W)$ of G. Observe that each class function is a linear combination of characters, if φ_{1}, φ_{2} be class functions on G, then $\langle \varphi_{1}, \varphi_{2} \rangle = \frac{1}{161} \sum_{s \in G} \varphi_{1}(s^{-1}) \varphi_{2}(s)$, $\forall s \in G$. If V_{1}, V_{2} be two C[G]-modules, then $\langle V_{1}, V_{2} \rangle_{G} = \dim \operatorname{Hom}^{G}(U_{1}, V_{2})$. Lemma 2.2: Using prop 2.1, $\langle \varphi_{1}, \varphi_{2} \rangle_{G} = \langle U_{1}, V_{2} \rangle_{G}$ by orthogonality. Theorem 2.3: Let ψ be a class function on H, φ be a class function on G, then $\langle \psi, \operatorname{Res} \varphi \rangle_{H} = \langle \operatorname{Ind} \psi, \psi \rangle_{G}$, in fact, this gives us to the formula $\operatorname{Ind}(\psi \cdot \operatorname{Res} \varphi) = (\operatorname{Ind} \psi) \cdot \psi$ (*) Definition 3: the ring R(G)

From a finite group G, let $\chi_{1,...}, \chi_{h}$ be distinct irreducible characters. Then a class function F on G is a character if and only if $F = \sum n_{i}\chi_{i}$ for $n_{i} \in \mathbb{Z}^{+}$ let us denote $R^{+}(G) = \{F(t^{-1}St) = F(S) \ \forall t.S \in G \mid F = \sum n_{i}\chi_{i}$ for $n_{i} \in \mathbb{Z}^{+}\}$, and $R(G) = \mathbb{Z}_{\chi_{1}} \oplus + \cdots \oplus \mathbb{Z}_{\chi_{h}}$, the group generated by $R^{+}(G)$. Here the element $k \in R(G)$ is called a virtual character², and $R(G) \subset F_{C}(G)$ is a subling. Proposition 3.1: If $H \leq G$, then (i) Res: $R(G) \longrightarrow R(H)$, (ii) Ind: $R(H) \longrightarrow R(G)$ is a ring homomorphism by Frobenius reciprocity.

Furthermore, by (*), the image of Ind: R(H) -> R(G) is an ideal of R(G).

Propusition 3.2: If we have commutative ring A , (i) and (ii) from prop 3.1 extended by linearity to A-linear maps:

(i)'
$$A \otimes \text{Res} : A \otimes R(G) \longrightarrow A \otimes R(H)$$

(ii)'' $A \otimes \text{Ind} : A \otimes R(H) \longrightarrow A \otimes R(G)$ (**)

Artin's Theorem

Theorem 4. Let X be a family of $H_2 \leq G$ subgroups; Ind: $\bigoplus_{H \in X} R(H) \rightarrow R(G)$ be the homomorphism, then (i) G is the Union of the conjugates of the subgroups belonging to X and (ii) the cohernel of Ind : $\bigoplus_{u \in Y} R(H) \longrightarrow R(G)$ is finite. By def 3, since R(G) is finitely generated as a group, we may rephrase as (ii) for each character X of G, there exist virtual charaters XH E R(H) where $H \in X$, and an integer $d \ge 1$, such that $dx = \sum_{H \in Y} Ind_{H}^{\alpha}(Y_{H})$. Proof 4.1. We want to show (ii) \Longrightarrow (i) Suppose (ii) is satisfied. We first see that coker (Ind) = R(G)/Image (Ind) is finite so | coker (Ind) | < ∞. Let S be the union of conjugates of the subgroups $H \in X$. i.e. $S = \bigcup_{\substack{s \in G \\ h \in X}} S^{HS^{-1}}$. Then for any $f_H \in R(H)$, each function of the form $\sum_{i} Ind_{H}^{G}(f_{H})$ vanishes off S. Indeed by (ii) where $R(G) = \bigoplus_{i=1}^{n} \mathbb{Z} X_i$, a virtual character, and for each $X \in R(G)$ we have $\chi = \sum_{H \in X} \frac{1}{d} \operatorname{Ind}_{H}^{G}(\chi_{H}) = \frac{1}{d} \sum_{H \in X} \operatorname{Ind}_{H}^{G}(\chi_{H}) = \frac{1}{|R(G)/|Image(Ind)|} \operatorname{Ind}_{H}^{G}(\chi_{H})$ such that virtual characters $X_H \in R(H)$ exists. Since $d \ge 1$ is an integer,

any function of the form $\sum \operatorname{Ind}_{H}^{G}(\chi_{H})$ vanishes off on S; (ii) is already satisfied each class function on G also vanishes off on S; hence, we find $S = \bigcup_{\substack{H \in X \\ S \in G}} S^{HS^{-1}} = G$, and this clearly implies (i) \Box

Proof 4.2. We want to show (i) \Longrightarrow (ii). Prior to proceed, we may use (**) from proposition 3.2. Suppose (i) is satisfied, then $\mathbb{Q} \otimes \text{Ind} : \bigoplus_{H \in X} \mathbb{Q} \otimes \mathbb{R}(H) \longrightarrow \mathbb{Q} \otimes \mathbb{R}(G)$ is surjective. This is equivalent to $\mathbb{C} \otimes \operatorname{Ind} : \bigoplus_{H \in X} \mathbb{C} \otimes \mathbb{R}(H) \longrightarrow \mathbb{C} \otimes \mathbb{R}(G)$; hence, by duality, $\mathbb{C} \otimes \text{Res} : \mathbb{C} \otimes \text{R(G)} \longrightarrow \bigoplus_{H \in X} \mathbb{C} \otimes \text{R(H)}$ is injective Su, if fEG is a class function in which restricts to () on each cyclic subgroup it is clearly zero, the cokernel is finite. Let A ≤ G is cyclic, and satisfies (i), then each X ∈ G is a)inear combination with coefficients Q in which induced by XA of A. We define propositions below to prove the theorem. Proposition 4.2.1. Let us construct a function O_A where $A \leq G$ cyclic with order a : $\mathcal{O}_{A} = \left\{ \begin{array}{c} \alpha \\ 0 \end{array} \right\}$, if \mathcal{X} generates A. Now if |G| = q finite, then $q = \sum_{A \leq G} \left[\operatorname{Ind}_{A}^{\alpha} \left(\mathcal{O}_{A} \right) \right]$. Note that g is a constant function that equals to the order of G. We take

$$\hat{\Theta}_{A} = \frac{1}{\alpha} \sum_{A} (4\chi y^{-1}) \quad \text{for each } \chi, y \in G, \ 4\chi y^{-1} \in A$$

$$= \frac{1}{\alpha} \sum_{A} \alpha = \sum_{A} 1 \quad \text{since } y \in G \quad \text{and } \ 4\chi y^{-1} \quad \text{generates } A$$
Since this is unique, $\sum_{A \leq G} \theta_{A}(\chi) = \sum_{Y \in G} 1 = 9$.

Proposition 4.2.2. Suppose $A \leq G$ is cyclic, then $\Theta_A \in R(A)$. By previous proposition, $\sum_{B < A} \operatorname{Ind}_{B}^{A}(\theta_{B}) = \theta_{A} + \sum_{B \neq A} \operatorname{Ind}_{B}^{A}(\theta_{B}) = \alpha$. Here, by strong induction, for $B \neq A$, we have $\Theta_B \in R(B)$ so that $\operatorname{Ind}_B^A(\Theta_B) \in R(A)$ Conversely, for $a \in R(A)$ we also see that $\Theta_A \in R(A)$. We then use prop 4.2.1 and 4.2.2. to show (i) => (ii). NOW, consider $A' \subset yAy^{-1}$; e. the conjugate of A, then we observe from Ind: R(A') -> R(G) to Ind: R(A) -> R(G), the image of Ind A' is clearly contained in Image (Ind A). So , $X = \bigcup_{A \in G_A} \theta_A$, and by previous propusitions, we have seen that $q = \sum_{A \in Y} \operatorname{Ind}_{A}^{G}(O_{A})$ where $O_{A} \in R(A)$, $g \in Image(Ind_A^{G})$. In fact, by propusition 3.1, Image(Ind_A) is an ideal of R(G). Hence, for each $X \in R(G)$, this image (Ind_A^G) contains every element of the form gX. i.e. we have gZ1 be pusitive integer, there exist some virtual characters $\chi_A \in R(A)$, $A \leq G$, such that $g_{\chi} = \sum_{A \in \chi} Ind_A^{G}(\chi_A)$. This implies (11)